Moment bounds and central limit theorems for Gaussian subordinated arrays
نویسندگان
چکیده
A general moment bound for sums of products of Gaussian vector’s functions extending the moment bound in Taqqu (1977, Lemma 4.5) is established. A general central limit theorem for triangular arrays of nonlinear functionals of multidimensional non-stationary Gaussian sequences is proved. This theorem extends the previous results of Breuer and Major (1981), Arcones (1994) and others. A Berry-Esseen-type bound in the above-mentioned central limit theorem is derived following Nourdin, Peccati and Podolskij (2011). Two applications of the above results are discussed. The first one refers to the asymptotic behavior of a roughness statistic for continuous-time Gaussian processes and the second one is a central limit theorem satisfied by long memory locally stationary process.
منابع مشابه
Stein’s method on Wiener chaos
We combine Malliavin calculus with Stein’s method, in order to derive explicit bounds in the Gaussian and Gamma approximations of random variables in a fixed Wiener chaos of a general Gaussian process. Our approach generalizes, refines and unifies the central and non-central limit theorems for multiple Wiener-Itô integrals recently proved (in several papers, from 2005 to 2007) by Nourdin, Nuala...
متن کاملCentral Limit Theorems and Quadratic Variations in terms of Spectral Density
We give a new proof and provide new bounds for the speed of convergence in the Central Limit Theorem of Breuer Major on stationary Gaussian time series, which generalizes to particular triangular arrays. Our assumptions are given in terms of the spectral density of the time series. We then consider generalized quadratic variations of Gaussian fields with stationary increments under the assumpti...
متن کاملWigner Chaos and the Fourth Moment
We prove that a normalized sequence of multiple Wigner integrals (in a fixed order of free Wigner chaos) converges in law to the standard semicircular distribution if and only if the corresponding sequence of fourth moments converges to 2, the fourth moment of the semicircular law. This extends to the free probabilistic setting some recent results by Nualart and Peccati on characterizations of ...
متن کاملThe optimal fourth moment theorem
We compute the exact rates of convergence in total variation associated with the ‘fourth moment theorem’ by Nualart and Peccati (2005), stating that a sequence of random variables living in a fixed Wiener chaos verifies a central limit theorem (CLT) if and only if the sequence of the corresponding fourth cumulants converges to zero. We also provide an explicit illustration based on the Breuer-M...
متن کاملSecond order Poincaré inequalities and CLTs on Wiener space
We prove in nite-dimensional second order Poincaré inequalities on Wiener space, thus closing a circle of ideas linking limit theorems for functionals of Gaussian elds, Stein's method and Malliavin calculus. We provide two applications: (i) to a new second order characterization of CLTs on a xed Wiener chaos, and (ii) to linear functionals of Gaussian-subordinated elds.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Multivariate Analysis
دوره 114 شماره
صفحات -
تاریخ انتشار 2013